Robust identification of topological phase transition by self-supervised machine learning approach

Author:

Ho Chi-Ting,Wang Daw-Wei

Abstract

Abstract We propose a systematic methodology to identify the topological phase transition through a self-supervised machine learning model, which is trained to correlate system parameters to the non-local observables in time-of-flight experiments of ultracold atoms. Different from the conventional supervised learning approach, where the predicted phase transition point is very sensitive to the training region and data labeling, our self-supervised learning approach identifies the phase transition point by the largest deviation of the predicted results from the known system parameters and by the highest confidence through a systematic shift of the training regions. We demonstrate the robust application of this approach results in various 1D and 2D exactly solvable models, using different input features (time-of-flight images, spatial correlation function or density–density correlation function). As a result, our self-supervised approach should be a very general and reliable method for many condensed matter or solid state systems to observe new states of matters solely based on experimental measurements, even without a priori knowledge of the phase transition models.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3