First-principles insights into the spin-valley physics of strained transition metal dichalcogenides monolayers

Author:

Faria Junior Paulo EORCID,Zollner KlausORCID,Woźniak TomaszORCID,Kurpas MarcinORCID,Gmitra MartinORCID,Fabian JaroslavORCID

Abstract

Abstract Transition metal dichalcogenides (TMDCs) are ideal candidates to explore the manifestation of spin-valley physics under external stimuli. In this study, we investigate the influence of strain on the spin and orbital angular momenta, effective g-factors, and Berry curvatures of several monolayer TMDCs (Mo and W based) using a full ab initio approach. At the K-valleys, we find a surprising decrease of the conduction band spin expectation value for compressive strain, consequently increasing the dipole strength of the dark exciton by more than one order of magnitude (for 1 % 2 % strain variation). We also predict the behavior of direct excitons g-factors under strain: tensile (compressive) strain increases (decreases) the absolute value of g-factors. Strain variations of ∼1% modify the bright (A and B) excitons g-factors by ∼0.3 (0.2) for W (Mo) based compounds and the dark exciton g-factors by ∼0.5 (0.3) for W (Mo) compounds. Our predictions could be directly visualized in magneto-optical experiments in strained samples at low temperature. Additionally, our calculations strongly suggest that strain effects are one of the possible causes of g-factor fluctuations observed experimentally. By comparing the different TMDC compounds, we reveal the role of spin–orbit coupling (SOC): the stronger the SOC, the more sensitive are the spin-valley features under applied strain. Consequently, monolayer WSe2 is a formidable candidate to explore the role of strain on the spin-valley physics. We complete our analysis by considering the side valleys, Γ and Q points, and by investigating the influence of strain in the Berry curvature. In the broader context of valley- and strain-tronics, our study provides fundamental microscopic insights into the role of strain in the spin-valley physics of TMDCs, which are relevant to interpret experimental data in monolayer TMDCs as well as TMDC-based van der Waals heterostructures.

Funder

Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky

Narodowe Centrum Nauki

Polish Ministry of Science and Higher Education

Graphene Flagship

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3