Abstract
Abstract
While typical theories of atom–light interactions treat the atomic medium as being smooth, it is well-known that microscopic optical effects driven by atomic granularity, dipole–dipole interactions, and multiple scattering can lead to important effects. Recently, for example, it was experimentally observed that these ingredients can lead to a fundamental, density-dependent dephasing of optical spin waves in a disordered atomic medium. Here, we go beyond the short-time and dilute limits considered previously, to develop a comprehensive theory of dephasing dynamics for arbitrary times and atomic densities. In particular, we develop a novel, non-perturbative theory based on strong disorder renormalization group (RG), in order to quantitatively predict the dominant role that near-field optical interactions between nearby neighbors has in driving the dephasing process. This theory also enables one to capture the key features of the many-atom dephasing dynamics in terms of an effective single-atom model. These results should shed light on the limits imposed by near-field interactions on quantum optical phenomena in dense atomic media, and illustrate the promise of strong disorder RG as a method of dealing with complex microscopic optical phenomena in such systems.
Funder
National Natural Science Foundation of China
H2020 European Research Council
Government of Spain
Fundación Cellex
National Key Laboratory Foundation of China
Generalitat de Catalunya
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献