On space charge effects in laboratory-based photoemission electron microscopy using compact gas discharge extreme ultraviolet sources

Author:

Wilson Daniel,Schmitz Christoph,Rudolf Denis,Wiemann Carsten,Schneider Claus M,Juschkin Larissa

Abstract

Abstract The analysis of electronic and structural properties of surfaces has been greatly advanced by photoemission electron microscopy and spectroscopy techniques. To further improve lateral and energy resolution of the instruments, it is necessary to optimize parameters of the radiation sources employed for photoemission studies (e.g. photon flux, pulse duration, spot size etc). We studied space charge effects observed in an energy-filtering photoemission electron microscope operated with a compact laboratory-scale gas-discharge extreme ultraviolet light source. In this system, we found limits of spatial- and energy-resolution controlled by the source radiation parameters. The pulse repetition rate can be varied in the kHz range and the duration of the EUV emission was measured to be several tens of nanoseconds long, and thereby very different from the standard synchrotron sources typically used for similar experiments. The spatial resolution could be improved by a factor of 5, but only on the expense of the photon density per pulse, which had to be decreased by a factor of 17 in order to reduce the image blur due to space charge effects. Furthermore, we found broadening of the x-ray photoelectron spectroscopy peaks for high photon fluxes. We have also performed a n-body Monte Carlo simulation to evaluate the difference between core-level photoelectrons and secondary electrons with respect to space charge.

Funder

Helmholtz AssociationJARA-FIT

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3