Abstract
Abstract
The relationship between stress and dislocation density in MOCVD epitaxial AlN was studied. It has been found that the aluminum nitride (AlN) epitaxial layer generates tensile stress when the crystal islands are merged. By controlling the size and density of crystal islands at the end of 3D growth, the tensile stress generated during epitaxy can be effectively reduced. Mechanical calculations show that there is a linear relationship between the edge thread dislocations density of AlN and the tensile stress during growth. By controlling the stress during AlN growth below 0.1 Gpa, a high-quality AlN sample with an edge thread dislocation density of 6.31 × 107 cm−2 was obtained.
Funder
the National Space Science Center of the Chinese Academy of Sciences “Climbing Program” Director’s Fund
National Natural Science Foundation of China
National Key Research and Development Program of China
Youth Innovation Promotion Association of Chinese Academy of Sciences