Abstract
Abstract
Ion implantation of transition metals into Si, followed by pulsed laser melting and rapid solidification, shows promise for making Si devices with sub-band gap optoelectronic response. We study Si implanted with Au at doses ranging from 1015–1016 at cm−2, with all but the lowest dose exhibiting interface breakdown during solidification, resulting in heavily defected layers. Terahertz photocarrier lifetime measurements confirm that layers with breakdown show recombination lifetimes of about 100 ps, compared to 800 ps for a layer with no breakdown. Device measurements, however, show more photoresponse at 1550 nm in a layer with breakdown than in a layer without. The results suggest that avoiding breakdown may be desirable but might not necessarily be imperative for making a useful device.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献