High-temperature intrinsic ferromagnetism in heavily Fe-doped GaAs layers

Author:

Kudrin A VORCID,Lesnikov V P,Danilov Yu A,Dorokhin M V,Vikhrova O V,Demina P B,Pavlov D AORCID,Usov Yu V,Milin V E,Kuznetsov Yu M,Kriukov R NORCID,Konakov A A,Tabachkova N Yu

Abstract

Abstract The layers of a high-temperature novel GaAs:Fe diluted magnetic semiconductor (DMS) with an average Fe content up to 20 at. % were grown on (001) i-GaAs substrates using a pulsed laser deposition in a vacuum. The transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy investigations revealed that the conductive layers obtained at 180 and 200 ºC are epitaxial, do not contain any second-phase inclusions, but contain the Fe-enriched columnar regions of overlapped microtwins. The TEM investigations of the non-conductive layer obtained at 250 ºC revealed the embedded coherent Fe-rich clusters of GaAs:Fe DMS. The x-ray photoelectron spectroscopy investigations showed that Fe atoms form chemical bonds with Ga and As atoms with almost equal probability and thus the comparable number of Fe atoms substitute on Ga and As sites. The n-type conductivity of the obtained conductive GaAs:Fe layers is apparently associated with electron transport in a Fe acceptor impurity band within the GaAs band gap. A hysteretic negative magnetoresistance (MR) was observed in the conductive layers up to room temperature (RT). MR measurements point to the out-of-plane magnetic anisotropy of the conductive GaAs:Fe layers related to the presence of the columnar regions. The studies of the magnetic circular dichroism confirm that the layers obtained at 180, 200 and 250 ºC are intrinsic ferromagnetic semiconductors and the Curie point can reach up to at least RT in case of the conductive layer obtained at 200 ºC. It was suggested that in heavily Fe-doped GaAs layers the ferromagnetism is related to the Zener double exchange between Fe atoms with different valence states via an intermediate As and Ga atom.

Funder

Russian Science Foundation

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ferromagnetism in heavily Fe-doped GaAs: a DFT study;Physica Scripta;2024-08-27

2. Optical, Electrical, and Optoelectronic Characterization of Ti‐Supersaturated Gallium Arsenide;physica status solidi (a);2024-04-26

3. Structural and magnetic properties of Ni cluster embedded (111)NiO layers grown on (0001)GaN films;Journal of Vacuum Science & Technology A;2024-02-20

4. Structure, Morphology, Chemical Composition, and Optical Properties of Annealed Multilayer Ge/Al2O3 and Si/Ge/Si/Al2O3 Nanoperiodic Systems;Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques;2023-12

5. Gigahertz Optical Digital-to-Analog Multiplier;2023 International Russian Automation Conference (RusAutoCon);2023-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3