Abstract
Abstract
Wide bandgap semiconductor gallium oxide (β-Ga2O3) has emerged as a prominent material in the field of high-power microelectronics and optoelectronics, due to its excellent and stable performance. However, the lack of high-quality p-type β-Ga2O3 hinders the realization of its full potential. Here, we initially summarize the origins of p-type doping limitation in β-Ga2O3, followed by proposing four potential design strategies to enhance the p-type conductivity of β-Ga2O3. (i) Lowering the formation energy of acceptors to enhance its effective doping concentration. (ii) Reducing the ionization energy of acceptors to increase the concentration of free holes in the valence band maximum (VBM). (iii) Increasing the VBM of β-Ga2O3 to decrease the ionization energy of acceptors. (iv) Intrinsic defect engineering and nanotechnology of β-Ga2O3. For each strategy, we illustrate the design principles based on fundamental physical theories along with specific examples. From this review, one could learn the p-type doping strategies for β-Ga2O3.
Funder
Major Program (JD) of Hubei Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on the carrier transmission distance of a-Ga2O3 solar-blind photodetector;International Conference on Optoelectronic Information and Functional Materials (OIFM 2024);2024-07-05