Ultra-Short Term Power Load Prediction Based on Gated Cycle Neural Network and XGBoost Models

Author:

Li Xiaojin,Huang Yueyang,Shi Yuanbo

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Long term electricity forecast: A systematic review;Esteves;Procedia Computer Science,2015

2. The time series approach to short term load forecasting;Hagan;IEEE Transactions on Power Systems,1987

3. Quantitative analysis model of power load influencing factors based on improved grey correlation degree;Wang;Powergrid Technology,2017

4. Data-driven baseline estimation of residential buildings for demand response;Park;Energies,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ultra-short-term Power Load Forecasting Method Based on XGBoost and Fusion Feature Optimization;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

2. PM2.5 Concentration Prediction Model Based on Random Forest and SHAP;International Journal of Pattern Recognition and Artificial Intelligence;2024-04

3. Enterprise Application Outage Prediction Using XGBoost and LSTM;2023 19th International Conference on Network and Service Management (CNSM);2023-10-30

4. Mid- to Long-Term Electric Load Forecasting Based on the EMD–Isomap–Adaboost Model;Sustainability;2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3