Research on numerical simulation method for 3D marine direct current resistivity

Author:

Ling Jiaxuan,Deng Wei,Liu Siqin,Chen Qingrui,Wei Shiwei,Li Mengmeng,Wei Shuliu

Abstract

Abstract As one of the most important methods in marine electromagnetic exploration, the marine direct current (DC) resistivity method has been widely used in the exploration of marine minerals, oil and gas, as well as in large-scale engineered geological exploration and other fields. Efficient and high-precision forward algorithms are the foundation for an accurate quantitative interpretation of the marine DC resistivity method. We have implemented an efficient and high-precision forward modeling approach for 3D marine DC resistivity. First, the wave number domain anomalous potential control equations are obtained by performing a 2D Fourier transform along the horizontal direction based on the differential control equations satisfied by the marine DC anomalous potential. Instead of directly solving the 3D numerical simulation problem, we transform the 3D numerical simulation problem into multiple 1D numerical simulation problems in the wavenumber domain by dimensionality reduction for computational efficiency. Second, the boundary conditions of the governing equations are given to obtain the corresponding boundary value problems, and the anomalous potential is solved using the 1D finite element method in the wavenumber domain. Next, we perform a 2D inverse Fourier transform on the wave-number domain anomalous potential to obtain the spatial domain anomalous potential. Furthermore, compact operators are used to iteratively modify the potential and obtain high-precision numerical solutions. Finally, we demonstrate the correctness of the proposed algorithm’s solution strategy by using a hierarchical ocean model, and the efficiency of the proposed algorithm by using a spherical model.

Publisher

IOP Publishing

Reference7 articles.

1. Three-dimensional modelling and inversion of DC resistivity data incorporating topography;Günther;I: modelling. Geophy. J. Int.,2006

2. MCSEM 3D modeling for arbitrarily anisotropic media;Yin;Geophysics,2014

3. Forward modeling of marine DC resistivity method for a layered anisotropic earth;Yin;Appl. Geophy.,2016

4. Three-dimensional numerical modeling of direct current resistivity methods in mixed space-wavenumber domain;Dai;J. Appl. Geophy.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3