Monte Carlo Simulation and measurement of Calibration Neutron Monitor count rate dependence on proximity to water

Author:

Duangjai B,Nuntiyakul W,Seripienlert A,Pagwhan A,Chaiwongkhot K,Sáiz A,Ruffolo D,Evenson P

Abstract

Abstract Due to their global availability, neutron monitors play a crucial role in measuring time variations in the Galactic cosmic ray flux. A portable calibration neutron monitor (CalMon) is useful for intercalibrating various neutron monitors to ensure accurate measurements. A common technique to ensure that the calibration is done in a consistent environment is to place the CalMon at some height above a wide container (such as a portable swimming pool) filled with water. This study investigates the impact of CalMon height and water depth on the count rate ratio relative to a standard 18NM64 count rate recorded nearby (CalMon/18NM64). We compare simulated data from the FLUKA Monte Carlo package to experimental data from [1] to demonstrate the statistical accuracy of our simulation. Using the simulation results, we then extend the study of the proximity-to-water effect on the counting rate. In this work, we present a preliminary empirical model by analyzing the CalMon/18NM64 as a function of CalMon to water distance. Overall, our study enhances understanding of the response of calibration monitors (now often called “mini-neutron monitors”) operated in various locations worldwide, and validates the Monte Carlo techniques used to model the response of the global neutron monitor network.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3