Microprocesses at the brass surface after impact of scanning beam of pulse-frequency ultraviolet nanosecond laser

Author:

Malinskiy T,Mikolutskiy S,Rogalin V,Khomich Yu,Zheleznov V,Kaplunov I,Ivanova A

Abstract

Abstract A mode of laser heat treatment of the brass surface prior to conducting of diffusion bonding is proposed. We used the frequency-pulse radiation of a nanosecond ultraviolet laser at a pulse energy density W = 0.15 - 0.52 J/cm2. The metal sample was moved relative to a stationary laser beam along a raster trajectory (“snake”) so that adjacent spots were overlapped with an overlap ratio of ⩾ 99 %. The impact of radiation on brass was carried out in a subthreshold mode excluding crater formation. The process took place while the metal remained in a condensed state. A regular rough structure with a height of individual uplifts of the order of 1 micron was formed on the surface of the brass. article is devoted to creation of aerosolized detergent compositions, needful for use during operation of high-precision metal mirrors, as a rule, in field conditions. The created detergent compositions with inhibitory properties allow, simultaneously with carrying out the process of physicochemical cleaning of optical surface from technological impurities, to ensure its protection from the influence of adverse climatic factors during storage, transportation, installation and exploitation of the element with the possibility of its alignment. The high climatic resilience of the protective films investigated in this article, which are formed during the cleaning of the optical surface, is shown. In this case, the optical characteristics of the processed elements after climatic tests do not get worse.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3