Operator-Compensation Schemes Combining with Implicit Integration Factor Method for the Nonlinear Dirac Equation

Author:

Zhang Ducui,Li Xianggui,Hua Dongying,Li Yanjing

Abstract

Abstract A high-order accuracy numerical method for the (1+1)-dimensional nonlinear Dirac (NLD) equation is given in this work. For the spatial discretization, high-order operator-compensation technology is adopted, then semi-discrete scheme is obtained. Energy conservation and charge conservation are shown for the semi- discrete scheme. For the temporal discretization, implicit integration factor ( IIF) method is utilized to deal with the ordinary differential equations that are obtained from the semi-discrete scheme. The accuracy of the high-order numerical method is verified by numerical experiments, and the interaction dynamics of NLD solitary waves are investigated.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference18 articles.

1. Numerical methods for nonlinear Dirac equation;Xu;J. Comput. Phys.,2013

2. Global solution to nonlinear Dirac equation for Gross-Neveu model in 1 + 1dimensions;Zhang;Nonlinear Anal.,2015

3. Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity;Boussaïda;J. Funct. Anal.,2019

4. Multiplicity of solutions for asymptotically quadratic Dirac-Poisson system with non-periodic potential;Liao;Appl. Math. Lett.,2021

5. Operator-compensation methods with mass and energy conservationfor solving the Gross-Pitaevskii equation;Li;Appl. Numer. Math.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3