Potential for atmospheric monitoring using FAST telescopes

Author:

Jilek Vlastimil,Mandat Dusan,Salamida Francesco,Svozilikova Zuzana

Abstract

Abstract The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design for a next-generation ground-based ultra-high energy cosmic ray observatory, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays with an unprecedented aperture. Three telescope prototypes are installed nearby the fluorescence telescopes of Telescope Array and one prototype is located at the Pierre Auger Observatory. Apart from detecting cosmic ray showers, the FAST prototypes offer the possibility of detecting laser pulses from atmospheric facilities such as CLF. The first part of the contribution describes the theoretical modeling of the photon scattering processes for different atmospheric models, and the raytracing of photons from the laser shot to and inside the FAST telescope. Simulations will be performed for different types of scattering conditions dependent on e.g. the size of the scattering centers or other parameters such as humidity. The ultimate goal is to create a software tool simulating the measured signals in the FAST telescopes from distant laser shots with proper treatment of light propagation trough the atmosphere and trough the detector. Such simulation toolkit for FAST prototypes at the Pierre Auger Observatory will benefit from existing attempts done for the Telescope Array site. Another part of the contribution will concern the real data of the observed CLF shots by the FAST prototypes both at the Pierre Auger Observatory and Telescope Array. Moreover, we can focus on the comparison of measured CLF shots by FAST prototype with the available data recorded by the full-scale fluorescence telescopes of the Pierre Auger Observatory.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference4 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3