Iterative Image Reconstruction Methodology in Optical CT Radiochromic Gel Dosimetry

Author:

Collins S,Ogilvy A,Huang D,Hare W,Hilts M,Jirasek A

Abstract

Abstract Modern advancements in radiation therapy require paralleled advancements in the dosimetric tools used to verify dose distributions. Optical computed tomography (CT) imaged radiochromic gel dosimeters provide comprehensive, tissue equivalent, 3D dosimetric information with high spatial resolution and low imaging times. Traditional CT image reconstruction methods (filtered backprojection) do not account for light refraction within the optical CT system reducing the image quality. Iterative reconstruction methods make use of a system matrix that describes this light refraction thus, improving the reconstructed image quality. However, use of iterative reconstruction methods is not widespread, largely due to the impractical storage size of the required system matrix. Furthermore, current iterative reconstruction methods do not address the issue of image degradation due to a single detector element collecting light from multiple raypaths. For optical CT radiochromic gel dosimetry to be used effectively as a radiation therapy treatment plan verification tool, the system must be both practical and accurate. Thus, this work has two main objectives: (i) reduce the size of system matrices by means of polar coordinate discretization in lieu of the traditional Cartesian coordinate discretization, and (ii) reduce image degradation due to multiple raypaths by a novel approach to populating the system matrix that accounts for multiple raypaths.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3