High-performance process fluids used for vibration finishing of parts with granular media made of natural material “Baykalit”

Author:

Lebedev V,Shumyacher V,Kolganova Ye,Krivosheev D

Abstract

Abstract The results of studies of the technological capabilities of granular media made of natural material “Baykalit” in the conditions of vibration technological systems are presented. Baikalit is a siliceous rock-fine-grained quartzite (microquartzite) - with an aggregate structure of quartz grains measuring 1.5-3 microns with sharp boundaries between these very grains. The granules obtained as a result of crushing the mineral rock Baikalit have a sufficiently high hardness (at least 6.0 - 7.0 on the Mohs scale). The presence of many wedge-shaped vertices along the perimeter of the granules and the arbitrariness of the shape allows us to consider them as a universal cutting tool that has access to various surfaces of complexity. It is shown that vibration treatment with granular media made of natural material “Baykalit” reduces the height of the initial surface micrprofile by 0.2-0.3 microns and is an effective way to remove burrs when processing parts with a surface microprofile height of more than 0.63 microns. The use of process fluids, which include increasing the wetting capacity of both Baikalit and processed workpieces, reduces the technological time of vibration processing by 1.5 times. The presence of components in the process fluid, such as protective colloids (Na CMC), prevents the sludge from sticking to the galtovochnye bodies, that is, prevents the “salting” of their profile, reduces the rigidity of the layer on the surface of the galtovochnyh bodies and workpieces, which contributes to productivity growth.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Increasing the Efficiency of Vibro-Abrasive Treatment of Transport Machine Parts by Combining Processing Media;Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2022);2023

2. Prospects for the Application of Granular Media from Natural Materials to Improve the Quality of Coating Surfaces;Lecture Notes in Mechanical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3