Author:
Vaishnavi Konda,Nikhitha Kamath U,Ashwath Rao B,Subba Reddy N V
Abstract
Abstract
Early detection of mental health issues allows specialists to treat them more effectively and it improves patient’s quality of life. Mental health is about one’s psychological, emotional, and social well-being. It affects the way how one thinks, feels, and acts. Mental health is very important at every stage of life, from childhood and adolescence through adulthood. This study identified five machine learning techniques and assessed their accuracy in identifying mental health issues using several accuracy criteria. The five machine learning techniques are Logistic Regression, K-NN Classifier, Decision Tree Classifier, Random Forest, and Stacking. We have compared these techniques and implemented them and also obtained the most accurate one in Stacking technique based with an accuracy of prediction 81.75%.
Subject
General Physics and Astronomy
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献