Engine replacement scheduling optimization using Data Mining

Author:

Farizal ,Joelian Albert

Abstract

Abstract Engine overhaul activity in heavy duty equipment takes long shutdown duration, while unscheduled replacement is impacted on process delay, increasing man power cost, and production loss. One main cause of these problems is the scheduling performed just based on mechanics’ intuition and experience. On the other side, condition monitoring data are available in a large number. Reliable data processing methods are needed to disclose hidden information from the data. For the purpose, this research used three data mining methods on condition monitoring data and external factors of heavy equipment engine to get an optimized engine replacement scheduling. Clustering method was used to classify condition monitoring data, association rule was used to analyze the interrelationship between variables and time series analysis was used to predict the value of condition monitoring. The result showed that data mining methods can be used to perform scheduling optimization. Unscheduled replacement engine or engine failed in service was reduced from 31% to 13%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Hydraulic metal structure health diagnosis based on data mining technology;Yang;J. Water science and Engineering 2015,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3