Compressive sensing of complex-valued data using Gaussian entropy

Author:

Shen Yibing

Abstract

Abstract In this paper, we propose an effective compressive sensing algorithm based on Gaussian entropy for complex-data. Compared with the traditional mean squared error (MSE) method, we consider the full second order statistics information of Gaussian noise in the new algorithm, including relevant information and conjugate information, which makes the recovered signal closer to the original input signal. Simulation results of the synthesized 1D signal and 2D signal show that the proposed algorithm has better performance than the MSE method.

Publisher

IOP Publishing

Reference20 articles.

1. Compressed sensing;Baraniuk;IEEE Signal Process.Mag,2007

2. An introduction to compressive sampling;Candès;IEEE Signal Process. Mag,2008

3. Decoding by Linear Programming;Candès;IEEE Trans. Inf. Theory,2005

4. For most large under determined systems of liner equations, the minimal l1-norm solution is also the sparsest solution;Donoho;Communications on Pure and Applied Mathematics,2006

5. Robust m-estimation-based maximum correntropy kalman filter;Liu;ISA transaction,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3