Simulating Nonlinear Dynamics of a 3D Crystal Lattice of Metals

Author:

Semenov A S,Semenova M N,Bebikhov Yu V,Zakharov P V,Korznikova E A

Abstract

Abstract Oscillations of crystal lattices determine important material properties such as thermal conductivity, heat capacity, thermal expansion, and many others; therefore, their study is an urgent and important problem. Along with experimental studies of the nonlinear dynamics of a crystal lattice, effective computer simulation techniques such as ab initio simulation and the molecular dynamics method are widely used. Mathematical simulation is less commonly used since the calculation error there can reach 10 %. Herewith, it is the least computationally intensive. This paper describes the process and results of mathematical simulation of the nonlinear dynamics of a 3D crystal lattice of metals using the Lennard-Jones potential in the MatLab software package, which is well-proven for solving technical computing problems. The following main results have been obtained: 3D distribution of atoms over the computational cell has been plotted, proving the possibility of displacement to up to five interatomic distances; the frequency response has been evaluated using the Welch method with a relative RMS error not exceeding 30 %; a graphical dependence between the model and the reference cohesive energy data for a metal HCP cell has been obtained with an error of slightly more than 3 %; an optimal model for piecewise-linear approximation has been calculated, and its 3D interpolation built. All studies performed show good applicability of mathematical simulation to the problems of studying dynamic processes in crystal physics.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3