A novel approach for analyzing the dynamic properties of trees with fractal sympodial branching architecture: a group tree modeling

Author:

Loong Cheng Ning,Dimitrakopoulos Elias G.

Abstract

Abstract It is remarkable that trees with high slenderness ratios are able to survive regular strong wind events. This phenomenon is motivating the exploration of the inherent vibration mitigation mechanisms of trees. This study examines the role of trees’ hierarchical branching architecture on their modal properties. Its particular focus is on the modal frequencies and mode shapes of sympodial trees. This study idealizes trees as fractal structures with sympodial branching architecture and proposes a new group tree modeling approach to analyze their modal properties. Analytical closed-form solutions are derived to estimate the modal properties of trees. The analysis shows that sympodial trees localize vibrations on higher order branches. Furthermore, the modal properties of trees with a specific fractal level could be self-similar, and repetitive and form recursive relations with that of the previous level. Overall, the results offer a possible explanation of how fractal branching architecture prevents trees from excessive vibration.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3