Study on hydraulic characteristics and internal flow mechanism of composite blade disc pump

Author:

Lian Xiaolong,Zhou Bo,Wang Chuan,Li Bin,Pei Yingju,Dong Qiyu

Abstract

Abstract Disc pump is widely used in difficult-pump-medium transportation such as petroleum and chemical industry. Discontinuous blade impellers play an important role in the passability and energy efficiency of disk pump. The research of design and internal flow mechanism are particularly important. Based on the structural characteristics and the internal flow mechanism of the original model, the improved design of the blade structure is carried out. Through the experimental verification and the numerical analysis of multiple working conditions, the influence law of the new composite blade on the hydraulic characteristics and internal flow mechanism of the disc pump is obtained. The results show that the error of energy efficiency characteristics of simulation and experiment under different flow conditions is within 5%, and the accuracy of simulation results meets the requirements; The hydraulic characteristics of the improved model are about 5.8% higher than that of the original model. The driving force of the new composite blade is more sufficient and the flow field is improved more obviously; The low pressure is located in the center of the impeller and gradually increases to the outlet of the impeller. There is obvious energy and mass conversion between the bladed region and bladeless region. The research results can provide a reference for the structural design of disc pump composite blade and the analysis of internal flow mechanism.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Numerical analysis on pressure fluctuation and radial force of disc pump with straight blade;Xie;China Petroleum machinery,2013

2. Solving the problems of pumping medium-to-high density paper stock;Sarah;World Pumps,1997

3. Research on unsteady characteristics and inflow mechanism of different pumping chamber of disc pump;Wang;Journal of engineering for thermal energy and power,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3