A New Neuron Ion Channel Model Under Time Varying Input Currents

Author:

Khudhur Ahmed Mahmood,Shano Ahmed M,Abbas Abdul Salam Hassan

Abstract

Abstract In recent years, it has been argued and shown experimentally that ion channel noise in neurons can cause fundamental effects on the neuron’s dynamical behavior. Most profoundly, ion channel noise was seen to be able to cause spontaneous firing and stochastic resonance. However, Hodgkin-Huxley model affected when inserting some colored noise terms inside the conductance’s, where those effects captured by colored noise due to the gate multiplicity. This paper presents a new ion channel model under time varying periodic input currents. It firstly introduced the effect of without, with (colored noise), on the proposed model and the comparison of ion channel based on HH, Fox- Lu, and Linaro models. Additionally, in order to overcome the limitations of other parameter estimation methods, the proposed method fully constraints their models and obtains all models capabilities of reproducing the data. Finally, the relationship between the sequence of colored noise and the spike frequency are simulated efficiently each gate compared with microscopic simulations of the stochastic Markov process method. The simulation results revealed that above a critical value of the input frequency and also below a certain amplitude value, the colored terms play a very prominent role on the firing statistics. In addition, the spiking rate generated from the proposed model very close to microscopic simulations and doesn’t effect by the membrane size.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural properties of zirconia/alumina composites prepared by various techniques;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

2. Eyelashes and eyelids detection and removing for iris recognition system;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3