Influence of cutting fluid conditions on tool wear and surface roughness in hard turning AISI-D2 Steel using mixed ceramic tools

Author:

Junaid Mir M.,Wani M.F,Banday Summera,Parveez Bisma

Abstract

Abstract In the present work, the effects of machining factors and cutting fluid flow conditions on tool wear and surface roughness were studied. Response surface methodology technique with Face centered composite design was employed to minimize the number of experiments. The experiments were performed on a hardened AISI D2 rod using mixed ceramic (Al2O3/TiC) inserts in turning process. The effect of machining time was found to be the most influential parameter affecting tool wear, followed by cutting speed. However, machining time followed by feed rate were the most significant parameters on surface roughness. Moreover, cutting fluid condition showed substantial contribution towards decreasing tool wear rate and increasing surface finish.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Milling of D3 tool steel to optimize machining parameters and develop a mathematical model to achieve minimum surface roughness;2ND INTERNATIONAL CONFERENCE & EXPOSITION ON MECHANICAL, MATERIAL, AND MANUFACTURING TECHNOLOGY (ICE3MT 2022);2023

2. Experimental investigation of the effect of machinability on surface quality and vibration in hard turning of hardened AISI 4140 steels using ceramic cutting tools;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2021-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3