Implicit particle-in-cell development for ion source plasmas

Author:

Savard N.,Fubiani G.,Baartman R.,Dehnel M.

Abstract

Abstract Particle-in-Cell (PIC) codes used to study plasma dynamics within ion sources typically use an explicit scheme. These methods can be slow when simulating regions of high electron density in ion sources, which require resolving the Debye length in space and the plasma frequency in time. Recent developments on fully-implicit PIC models in curvilinear geometries have shown that these spatial/time scales can be significantly decreased/increased respectively, allowing for notable speed-ups in simulation time, and thus making it a potential tool for studying the physics of ion sources. For this purpose, a charge and energy conserving implicit PIC code has been developed in 1D to determine its potential for simulating bounded plasmas. In this paper, we use this model to simulate a 1D benchmark of a bounded plasma with fixed plasma density and electron/ion temperatures. The results are shown to compare well to the benchmark and to the results using an explicit PIC code. It is shown that the total amount of macro-particles used in the simulation is a better figure of merit for accurate results than the standard particles per cell used in literature. Significant speed-ups in computation time can be achieved for high plasma densities if the accuracy requirements are relaxed. In this case, we demonstrate the ability of the implicit PIC code to speed-up simulation time by nearly a factor of 12 compared to explicit PIC.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3