Study on the Vibration Displacement of Hydraulic Pipeline System Excited by Fluid Impact

Author:

Zhou Zhijin,Wen Duo,Liu Aijun

Abstract

Abstract Hydraulic impact had an effect on pipeline vibration displacement, so it was important to study the external lateral impact periodic force on fluid-structure coupling vibration displacement of hydraulic pipeline. Based on Bernoulli beam model, the fluid-structure coupling vibration equation of flexible pipeline was established by analyzing the stress of flexible pipeline under the action of internal flow. The hydraulic system pipeline was simulated whether the pipeline was subject to periodic impact force. The displacement-time curves in x, y and z directions of vibration monitoring points of hydraulic flexible pipelines were obtained, and the maximum displacement-time curves of fluid-structure coupling vibration under different pressure hydraulic impact were obtained. The simulation results were shown that the vibration of monitoring points in x, y and z directions of hydraulic impact pressure increased and the total displacement of the pipeline middle section of the hydraulic system decrease continuously, and then they tend to stabilize after a period of attenuation. The maximum displacement value of the X-direction monitoring point in the middle part of the hydraulic system pipeline was 9.5e −5 m, and the displacement vibration was stable at 0.135s. The maximum y-displacement was 3.1e −4m, and the vibration was stable at 0.2 s. The maximum z displacement was 1.32e-4 m, and the vibration was stable at 0.36 s. The total displacement was 3.35e −4 m, and the vibration was stable at 0.43s. Increasing the impact pressure, the maximum displacement of the hydraulic pipeline vibrations were larger, and the attenuation of the maximum values were faster. The research results provide a reference for the hydraulic system to prevent pressure shock and reduce vibration.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference12 articles.

1. Research status and development trend of pressure pulsation attenuator in expansion chamber;Yan;Machine Tools and Hydraulics,2015

2. Research status and prospect of resonant hydraulic pulsation attenuator;Yang;Journal of Mechanical Engineering,2015

3. Resonant frequency of an adjustable Helmholtz resonator in a hydraulic system;Kela;Archive of Applied Mechanics,2009

4. Adaptive-passive noise control with self-uning Helmholtz resonator;Bedout;Journal of Sound and Vibration,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3