Author:
Zhang Zhizhuo,Zheng Change
Abstract
Abstract
There are many kinds of inverse kinematics solutions for robots. Deep reinforcement learning can make the robot spend a short time to find the optimal inverse kinematics solution. Aiming at the problem of sparse rewards in the process of deep reinforcement learning, this paper proposes an improved PPO algorithm. Firstly, built a simulation environment for the operation of the robotic arm. Secondly, use a convolutional neural network to process the data read by the camera of the robotic arm, obtaining a network about Actor and Critic. Thirdly, based on the principle of inverse kinematics of the robotic arm and the reward mechanism in deep reinforcement learning, design a hierarchical reward function containing motion accuracy to promote the convergence of the PPO algorithm. Finally, compare the improved PPO algorithm with the traditional PPO algorithm. The results show that the improved PPO algorithm has improved both the convergence speed and the operating accuracy.
Subject
General Physics and Astronomy
Reference8 articles.
1. Control Method of Space Manipulator by Using Reinforcement Learning;Li;Aerospace Control,2020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献