Investigating the hydraulic resistance in the flow part elements of pneumatic systems and heat exchangers

Author:

Pugachuk A S,Fominykh N F,Kalashnikova E O,Gavrilova Yu A

Abstract

Abstract The article deals with the development of shell-and-tube heat exchangers for the needs of power engineering, based on additive technologies, in particular, selective laser sintering technology with new configurations of heat exchange surfaces. The role of heat exchangers in microturbines, the most common units of power plants of small distributed power generation, is considered. To intensify heat transfer and increase the efficiency of microturbines, it is proposed to use various configurations of flow channels of shell-and-tube heat exchangers made on the basis of additive technologies. Mathematical modeling and experimental study of a gas medium flow in the tubes of a heat exchanger are carried out. The dependences of the coefficient of hydraulic resistance between the surface of inlet and outlet of gas from tubes of various configurations on the Reynolds number are obtained. The results of the experiment allow us to conclude that the resistance of spiral-shaped tubes is slightly higher than the resistance of tubes with three ribs.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3