Analysis of bioleaching characteristics and multi-element dissolution behavior of complex zinc ores

Author:

Li Jiafeng,Qiu Xuemin,Qiu Xiaobin,Zhou Guili

Abstract

Abstract In order to recover low-grade complex zinc ore in a reasonable way, this study adopts bioleaching method to study it. The ore samples contain 1.52%, 2.03% and 14.4% zinc, respectively, which occurs in the form of sphalerite. Other major minerals include pyrite, galena, quartz and mica. The inoculation of the domesticated strain was basically free of adaptation period, and the cell concentration could be rapidly increased after a short decrease. The leaching extent of zinc increased continuously, while the leaching rate decreased gradually. After the bioleaching process, sliver, lead and iron were mainly present in the residue phase. X-ray diffraction spectroscopy analysis showed that sphalerite, galena and pyrite were dissolved, and the latter two further precipitated to produce PbSO4 and jarosite. In addition, the dissolution of calcium compounds can lead to the formation of gypsum precipitation. These precipitates covered the fresh ore surface may hinder the further bioleaching process. The Exponential model was used to simulate the bioleaching process, and it was found that the fit coefficients were all greater than 0.98, and a reasonable leaching cycle was further discussed. The results provide a good basis for the economic and environmentally friendly recovery of low-grade complex zinc ores.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3