Fabrication of 3D surface-enhanced Raman scattering (SERS) substrate via solid-state dewetting of sputtered gold on fumed silica surface

Author:

Pengphorm P,Nuchuay P,Boonrod N,Boonsit S,Srisamran P,Thongrom S,Pewkum P,Kalasuwan P,van Dommelen P,Daengngam C

Abstract

Abstract Raman spectroscopy is a potent and widespread optical analytical technique thanks to its non-invasive and high-specification for the detection of targeted molecules. However, for the case of trace detection, it is common that a weak Raman signal is easily swamped by noise and thus unable to be resolved. Here, we demonstrated a facile fabrication of a three-dimensional surface enhanced Raman spectroscopy (SERS) substrate, based on low-vacuum sputtering of gold nanofilm on hierarchically rough fumed silica monolayers deposited by layer-by-layer self-assembly technique. Due to the much lower surface energy of the silica-air heterostructure compared to metallic materials, deposited gold layers dewetted the surface spontaneously, forming nano-sized spherical gold particles without the requirement of an extra annealing process. Plasmonic effects were studied through optical absorption measurements, while the surface morphology and topography were examined using SEM and AFM for various sputtering durations. Furthermore, the enhancement of Raman spectrum was investigated for 10−4 M of methylene blue (MB), using 532 nm and 0.57 mW excitation laser. An initial Raman enhancement factor of 17 was observed at 1645 cm−1 peak, even with yet to be optimized fabrication procedures.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3