Optimation of Capacitor Bank Placement in Electric Network Using Genetic Algorithm

Author:

Arlenny ,Zondra Elvira,Zulfahri

Abstract

Abstract Minimizing losses in electric network should be considered the placing a shunt capacitor, the voltage level on each bus, the size and number of shunt capacitors to be used, and the supply of maximum and minimum of generator power. This paper is conducted the determination of location and size of shunt capacitor to be allocated in electric power transmission networks. The simulation using Genetic Algorithms (GA) method was applied to solve the problem of reactive power compensation optimation. To find out amount of compensation for voltage drop and power losses that occur in the system, a load flow analysis was performed using the Newton-Raphson method. The result of capacitor placement and capacitor capacity were shown the highest voltage conditions on bus 4 of 1.050 Mvar and the lowest on bus 24 of 9.69 Mvar. The optimization system was revealed the total losses system of 12.793 MW with a total generation cost of 15447.44 $/h for the capacitor reduction size of 18.8 Mvar. Therefore, the system can save 6.2 Mvar’s capacitors.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Optimal capacitor placement using fuzzy and real coded genetic algorithm for maximum saving;Reddy;J. of Theor and ApplInform. Tech.,2005

2. The use of the genetic algorithm for in-situ efficiency measurement of an induction motor;Charette;IEEE Power Engineering Society Winter Meeting,2000

3. Genetic algorithms for optimal reactive power compensation on the national grid system;Furong;IEEE Transactions on Power Systems,2005

4. Optimal placement of fixed and switched shunt capacitors for large-scale distribution systems using genetic algorithms;Swarnkar,2010

5. Optimized DG placement in radial distribution system with reconfiguration and capacitor placement using genetic algorithm;Saonerkar,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimización de la compensación reactiva en sistemas eléctricos por el método CRITIC;Ciencia Digital;2023-04-05

2. Electric Power Quality Optimization Using Genetic Algorithm;2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3