Effect of finned configuration of circular tube based on fluid-structure coupling on hydrogen flow characteristics

Author:

Wu Xunliang,Shao Mingxue,Cai Kaiyuan,Li Xiaoliang,Feng Songjiang

Abstract

Abstract Nuclear thermal propulsion has the characteristics of high specific impulse, large thrust, green and efficient, and is the primary choice of manned deep space exploration propulsion system. Because the circulating flow of propellant hydrogen in the internal pipeline of the engine is always affected by the harsh environment of high temperature and high pressure, it is very important to study the flow characteristics of hydrogen in the pipeline, the heat exchange characteristics of hydrogen and pipeline and the deformation characteristics of pipeline under heat stress. In this paper, the flow phenomena of hot hydrogen in round tubes in a laminar flow state were analyzed by numerical simulation with COMSOL Mulitiphisics6.0, and the fluid-structure coupling between hot hydrogen fluid and pipe was investigated by a multi-physics field. It is concluded that the smoother the inner wall of the pipeline is, the smaller the hydrogen flow velocity is, the smaller the surface pressure of the pipe wall is, and the smaller the fluid extrusion and impact deformation of the pipe in the typical pipe with the inner fin is. It inspires studying the application of hot hydrogen flow and pipeline configuration in nuclear thermal rocket engines, including improving heat transfer energy and uniformity.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3