Numerical Simulation of the Propagation of Premixed Gas in a Pipe Flame Arrestor

Author:

Liu Duo,Sun Shaochen,Wang Lin

Abstract

Abstract In this paper, a numerical model of the propagation process of premixed gas in a pipeline flame arrestor is established and solved. The numerical simulation results show that the flame propagation velocity and pressure variation curves of the propane-air premixed gas are the same as those of the ethylene-air premixed gas. The flame front and pressure oscillate periodically throughout the process, and the flame speed oscillates down when the flame front reaches approximately the middle and rear of the pipe. In contrast, the flame velocity versus pressure curve for the explosion of hydrogen-air premixed gases is quite different, with the flame propagating at an almost constant velocity in the initial stages, accelerating suddenly when the flame front reaches near the middle of the pipe, reaching a peak, followed by an accelerated decrease in flame velocity; at the middle and rear of the pipe, the flame once again propagates at a nearly constant velocity, and as the flame is quenched, the flame propagation velocity once again accelerates and decreases. The explosion pressures of the propane-air and ethylene-air premixed gases at each measurement point in the pipeline increase linearly with the initial pressure, and the explosion pressure appreciation is very close. The explosion pressure of hydrogen-air premixes increases significantly with increasing initial pressure, but the increase decreases slightly. The increase in initial pressure increases the flame propagation rate of the premixed gas, and the acceleration effect is significant.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference10 articles.

1. Experimental study on the performance test method of flame arresters [J];Shaochen;Journal of Chemical Engineering,2014

2. Experimental investigation on flame and detonation quenching: applicability of static flame arresters [J];Bauer;Journal of Loss Prevention in the Process Industries,2005

3. Using maximum experimental safe gap to select flame arresters [J];Britton;Process Safety Progress,2000

4. Process safety technology and the responsibility of industry [J];Howard;Chemical Engineering Progress,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3