Author:
Liu Duo,Sun Shaochen,Wang Lin
Abstract
Abstract
In this paper, a numerical model of the propagation process of premixed gas in a pipeline flame arrestor is established and solved. The numerical simulation results show that the flame propagation velocity and pressure variation curves of the propane-air premixed gas are the same as those of the ethylene-air premixed gas. The flame front and pressure oscillate periodically throughout the process, and the flame speed oscillates down when the flame front reaches approximately the middle and rear of the pipe. In contrast, the flame velocity versus pressure curve for the explosion of hydrogen-air premixed gases is quite different, with the flame propagating at an almost constant velocity in the initial stages, accelerating suddenly when the flame front reaches near the middle of the pipe, reaching a peak, followed by an accelerated decrease in flame velocity; at the middle and rear of the pipe, the flame once again propagates at a nearly constant velocity, and as the flame is quenched, the flame propagation velocity once again accelerates and decreases. The explosion pressures of the propane-air and ethylene-air premixed gases at each measurement point in the pipeline increase linearly with the initial pressure, and the explosion pressure appreciation is very close. The explosion pressure of hydrogen-air premixes increases significantly with increasing initial pressure, but the increase decreases slightly. The increase in initial pressure increases the flame propagation rate of the premixed gas, and the acceleration effect is significant.
Subject
Computer Science Applications,History,Education
Reference10 articles.
1. Experimental study on the performance test method of flame arresters [J];Shaochen;Journal of Chemical Engineering,2014
2. Experimental investigation on flame and detonation quenching: applicability of static flame arresters [J];Bauer;Journal of Loss Prevention in the Process Industries,2005
3. Using maximum experimental safe gap to select flame arresters [J];Britton;Process Safety Progress,2000
4. Process safety technology and the responsibility of industry [J];Howard;Chemical Engineering Progress,1988
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献