Exploring the impact of different inflow conditions on wind turbine wakes using Large-Eddy Simulations

Author:

Parinam Anand,Benard Pierre,Von Terzi Dominic,Viré Axelle

Abstract

Abstract The ever-growing demand for renewable energy, driven by cost-effectiveness and minimal ecological impacts, has resulted in the deployment of larger wind turbines with rotor diameters surpassing 200 m. This underscores the importance of a thorough understanding of flow dynamics to optimize operational efficiency in diverse atmospheric inflow scenarios. Understanding the intricate impact of atmospheric conditions, including wind shear and turbulence, on wind turbine wakes is crucial for optimizing wind farm layouts and performance, influencing wake evolution, turbine loads, and power output. This research focuses on bridging the gap between idealized inflow scenarios and real-world atmospheric inflow conditions by systematically integrating linear shear, turbulence and the logarithmic wind shear profile into the uniform inflow conditions and analyzing the wake behind the IEA-15 MW wind turbine. To specifically examine inflow effects, a constant hub height wind speed was maintained through a velocity controller. The study focuses on analyzing the wake’s flow field and providing insights into its recovery process. It was found that turbulence plays a critical role in a faster wake recovery as well as increasing the power production of the turbine for sheared inflows and the wind speed selected.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3