Bias correction of wind power forecasts with SCADA data and continuous learning

Author:

Jonas S,Winter K,Brodbeck B,Meyer A

Abstract

Abstract Wind energy plays a critical role in the transition towards renewable energy sources. However, the uncertainty and variability of wind can impede its full potential and the necessary growth of wind power capacity. To mitigate these challenges, wind power forecasting methods are employed for applications in power management, electricity trading, or maintenance scheduling. In this work, we present, evaluate, and compare four machine learning-based wind power forecasting models. Our models correct and improve 48-hour forecasts extracted from a numerical weather prediction (NWP) model. The models are evaluated on datasets from a wind park comprising 65 wind turbines. The best improvement in forecasting error and mean bias was achieved by a convolutional neural network, reducing the average NRMSE down to 22%, coupled with a significant reduction in mean bias, compared to a NRMSE of 35% from the strongly biased baseline model using uncorrected NWP forecasts. Our findings further indicate that changes to neural network architectures play a minor role in affecting the forecasting performance, and that future research should rather investigate changes in the model pipeline. Moreover, we introduce a continuous learning strategy, which is shown to achieve the highest forecasting performance improvements when new data is made available.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3