Accelerometer-based SOC estimation methodology for combustion control applied to Gasoline Compression Ignition

Author:

Silvagni G.,Ravaglioli V.,Ponti F.,Corti E.,Moro D.,Brusa A.,Cavina N.

Abstract

Abstract The European Community’s recent decision to suspend the marketing of cars with conventional fossil-fueled internal combustion engines from 2035 requires new solutions, based on carbon-neutral technologies, that ensure equivalent performances in terms of reliability, trip autonomy, refueling times and end-of-life disposal of components compared to those of current gasoline or diesel cars. The use of bio-fuels and hydrogen, which can be obtained by renewable energy sources, coupled with high-efficiency combustion methodologies might allow to reach the carbon neutrality of transports (net-zero carbon dioxide emissions) even using the well-known internal combustion engine technology. Bearing this in mind, experiments were carried out on compression ignited engines running on gasoline (GCI) with a high thermal efficiency which, in the future, could be easily adapted to run on a bio-fuel. Despite the well-reported benefits of GCI engines in terms of efficiency and pollutant emissions, combustion instability hinders the diffusion of these engines for industrial applications. A possible solution to stabilize GCI combustion is the use of multiple injections strategies, typically composed by 2 early injected fuel jests followed by the main injection. The heat released by the combustion of the earlier fuel jets allows to reduce the ignition delay of the main injection, directly affecting both delivered torque and center of combustion. As a result, to properly manage GCI engines, a stable and reliable combustion of the pre-injections is mandatory. In this paper, an estimation methodology of the start of combustion (SOC) position, based on the analysis of the signal coming from an accelerometer sensor mounted on the engine block, is presented (the optimal sensor positioning is also discussed). A strong correlation between the SOC calculated from the accelerometer and that obtained from the analysis of the rate of heat release (RoHR) was identified. As a result, the estimated SOC could be used to feedback an adaptive closed-loop combustion control algorithm, suitable to improve the stability of the whole combustion process.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3