Assessment of a desiccant cooling system in a traditional and innovative nanofluid HVAC system

Author:

Colangelo Gianpiero,Raho Brenda,Milanese Marco,Cannoletta Donato,de Risi Arturo

Abstract

Abstract The topic of energy saving is a constant in everyday life, and it is widespread all over the world. Space heating using solar panels is the most used renewable source of energy, but the application of solar energy for cooling the fluids used for refrigeration is growing very fast. Among the techniques used for refrigeration, this work focused on Desiccant Cooling. In particular, with the use of dynamic simulation software, it was possible to study the heat supplied and the energy consumption of a Heating Ventilation Air Conditioning (HVAC) system of a university building and to compare consumption with those of a Desiccant Cooling system applied to the same building. Four different cases were simulated: two related to the HVAC system, one of which operates with water and glycol and the other one with nanofluid, and the other ones to the Desiccant Cooling system with both types of fluids mentioned above. Keeping the same energy demand of the building in all the simulations, it was found that in summer the Desiccant Cooling system had higher performance than the traditional HVAC system and that the use of the nanofluid in both types of conditioning systems further increased the performance of 21%. Simulations were carried out using TRNSYS software.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3