Numerical analysis of heat and mass transfer through beds of spherical and non-spherical elements

Author:

Szymanek Ewa,Tyliszczak Artur,Marek Maciej

Abstract

Abstract Many issues related to mass and heat transfer through beds of granular materials are still not fully understood. In this work, non-isothermal turbulent flow is analysed within granular layers of spherical and non-spherical elements. We apply a volume penalization (VP) approach formulated in the framework of an immersed boundary technique (IB) on Cartesian computational meshes. It allows modelling flows around solid objects with almost arbitrarily complex shapes and in any form of contact. The validation of the solution accuracy is performed against ANSYS Fluent simulations using body-fitted meshes and experimental literature data. It shows the capability of the IB-VP approach for the simulations of flows in complex geometries. The main research focuses on the comparison of the influence of various types of particles and their temperature on vorticity, turbulence level and pressure drop inside and behind the granular bed. In particular, we analyse how the shape of the solid particles affects the efficiency of heat transfer in different flow conditions. The obtained results reveal the occurrence of very complex flow structures (recirculation and stagnation regions) inside beds. Comparison of results also point out preferred configurations of the beds.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3