Heart Failure Prediction with Machine Learning: A Comparative Study

Author:

Wang Jing

Abstract

Abstract Heart failure is a worldwide healthy problem affecting more than 550,000 people every year. A better prediction for this disease is one of the key approaches of decreasing its impact. Both linear and machine learning models are used to predict heart failure based on various data as inputs, e.g., clinical features. In this paper, we give a comparative study of 18 popular machine learning models for heart failure prediction, with z-score or min-max normalization methods and Synthetic Minority Oversampling Technique (SMOTE) for the imbalance class problem which is often seen in this problem. Our results demonstrate the superiority of using z-score normalization and SMOTE for heart failure prediction.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrative Framework for Heart Failure Risk Assessment and Tailored Mitigation Strategies;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

2. Machine learning in heart failure diagnosis, prediction, and prognosis: review;Annals of Medicine & Surgery;2024-05-06

3. Prediction of heart failure using an analysis of epicardial adipose tissue from CT calcium score images;Medical Imaging 2024: Clinical and Biomedical Imaging;2024-04-02

4. Predictive Modelling of Heart Disease: Exploring Machine Learning Classification Algorithms;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

5. A stroke prediction framework using explainable ensemble learning;Computer Methods in Biomechanics and Biomedical Engineering;2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3