Abstract
Abstract
Heart failure is a worldwide healthy problem affecting more than 550,000 people every year. A better prediction for this disease is one of the key approaches of decreasing its impact. Both linear and machine learning models are used to predict heart failure based on various data as inputs, e.g., clinical features. In this paper, we give a comparative study of 18 popular machine learning models for heart failure prediction, with z-score or min-max normalization methods and Synthetic Minority Oversampling Technique (SMOTE) for the imbalance class problem which is often seen in this problem. Our results demonstrate the superiority of using z-score normalization and SMOTE for heart failure prediction.
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献