Determination of phase change correction on gauge block measurement in two different interferometric measurement systems

Author:

Pringkasemchai A,Wongsaroj J,Mongkolsuttirat K

Abstract

Abstract Phase change correction (PCC) is an important correction value of the end effect in an optical interferometry system. Normally, this value is used to compensate for gauge block measurement by an optical interferometry system based on ISO 3650:1998. Two different interferometric measurement systems in terms of fringe fraction measurement were performed to determine the phase change correction by a five-stacking method. These results are used to determine the length measurement of gauge blocks in an optical interferometer technique and consequently, to evaluate the uncertainty of gauge blocks measurement. The preliminary results for steel gauge block are shown that the value of phase change correction in a phase shift gauge block interferometer (PSGBI) system and a standard uncertainty are 35.2 nm and 5.8 nm, respectively. In contrast, the values from an average slits gauge block interferometer (ASGBI) system and a standard uncertainty are 66.0 nm and 6.0 nm, respectively. We found that the phase correction from the PSGBI system is lower than ASGBI about 0.53 - 0.56 times because the different of wave front correction in two interferometric systems. However, the lengths of gauge blocks of all materials measured by the two systems were consistent as assessed by En number. According to the study, we can conclude that phase change correction is based on the characteristics of each GBI system, surface texture characteristic in term of wringing condition and material types of gauge block and optical plates such as the fringe fraction measurement technique, and wave front error compensation. Consequently, measurements that require a high accuracy should determine the phase change correction before each measurement due to this value is not interchangeable.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3