A Class of Non-Linear AGARCH(1,1) Model in Modeling Volatility of Returns

Author:

Nugroho Didit Budi

Abstract

Abstract There are various forms of GARCH (Generalized Autoregressive Conditional Heteroskedasticity) modeling. The contribution of this study is to propose a class of non-linear AGARCH (Asymmetric GARCH) model by applying the Simple Tukey transformation to the lagged-volatility equation. The model is fitted to the daily returns of buying exchange rate of the USD (US Dollar) to the IDR (Indonesian Rupiah) from January 2010 to December 2017. The Adaptive Random Walk Metropolis (ARWM) method is employed in the Markov chain Monte Carlo algorithm to estimate model parameters. This study finds that both asymmetric effect (between return and volatility) and non-linearity in volatility are statistically significant, suggesting to incorporate both parameters into the GARCH(1,1) model. To choose the better fit model, the Log-likelihood Ratio Test (LRT) and Deviance Information Criterion (DIC) are employed. The empirical results indicate that the proposed model outperforms the basic AGARCH(1,1) model. Therefore, this study suggest a new class of non-linear AGARCH model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3