Energy comparison of room temperature and superconducting synchrotrons for hadron therapy

Author:

Bisoffi G,Benedetto E,Karppinen M,Pullia M G,Khalvati M Reza,Rossi L,Sapinski M,Sorbi M,Valente U,van Weelderen R,Venchi G,Vretenar M

Abstract

Abstract The yearly energy requirements of room temperature (RT) and superconducting (SC) magnet options of a new hadron therapy (HT) facility are compared. Special reference is made to the layouts considered for the proposed SEEIIST facility. Benchmarking with the RT CNAO HT centre in Pavia (Italy) was carried out. The energy comparison is centred on the different synchrotron solutions, assuming the same injector and lines in the designs. The beam current is 20 times higher than in present generation facilities: this allows efficient multi-energy extraction (MEE), which shortens the therapy treatment and is needed especially in the SC option, because of the slow magnet ramping time. Hence, power values of the facility in the traditional mode were converted into MEE ones, for a fair comparison between RT and SC magnets. Cryocoolers (c.c.) and a liquefier are also compared, for synchrotron refrigeration. This study shows that a RT facility in MEE mode requires the least average energy, followed by the SC synchrotron solution with a liquefier, while the most energy intensive solution is the SC one with c.c.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3