Conversion of Solar Irradiance to Photovoltaic Power with Hybrid Model Chains

Author:

Xia Han,Gao Fan,Wang Wenting,Liu Bai,Zhang Hao,Yang Dazhi

Abstract

Abstract Accurate solar resourcing and forecasting depend upon the ability to convert weather forecasts to photovoltaic (PV) power forecasts, which remains challenging till this day. This study explores the fusion of physical model chains and machine learning, to achieve improved irradiance-to-power conversion. The outcomes of some well-tested steps of a model chain are used as input features of machine learning models, so as to form a hybrid model with high precision and wide applicability. Within this framework, a comparative analysis is conducted among three potential machine-learning models, including the long short-term memory (LSTM) network, k-nearest neighbors, and gradient boosting regressor. The results indicate that the physical-LSTM hybrid model exhibits superior performance to other options, reaching a correlation coefficient of 0.997. In cases where specific modeling parameters are unavailable, the hybrid model can mitigate the reliance on PV design parameters while gaining a notable increase in irradiance-to-power conversion accuracy, thereby substantiating a robust underpinning for PV grid connection.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3