Abstract
Abstract
The need for non-destructive testing is regulated by the rules of the Russian River Register, which can determine the choice of the method of non-destructive testing and the procedure for its implementation. Non-destructive testing methods used in naval mechanical engineering are: visual and measuring control, ultrasonic control, radiographic control, capillary control, magnetic control, eddy current control. Each of the methods, due to the difference in the implemented physical principles, has its own advantages and disadvantages, which impose restrictions on the flaw detection of parts. The analysis of the sculpted defects of ship equipment and machines, depending on the manufacturing method and operating conditions, was carried out. The limitations on the use of non-destructive testing methods are shown. Examples of non-flaw detective parts are given, the control of which is difficult, as well as flaw detective parts that can be controlled with a guaranteed condition for detecting defects. The advantage of the method of magnetic memory of metal is indicated, relative to other methods of non-destructive testing. Using the example of a piston pin of a marine diesel engine NVD 36, a comparative analysis of the applicability of ultrasonic testing methods, the magnetic memory method and the penetrating solutions method for detecting fatigue cracks was performed. The results of the control show that the applied methods confidently identify fatigue cracks in the controlled parts, machines and mechanisms of ship equipment.
Subject
General Physics and Astronomy