Design of Optically Controlled Reversible NOT Gate Using Micro Ring Resonators

Author:

Mandal Dhoumendra

Abstract

Abstract Micro Ring Resonator (MRR) is a successful micro-device with the help of which different types of optical logic gates, logic processors, arithmetic units, etc. can be designed and integrated easily into the modern high-speed communication network. In this article, at first, the author has explained the switching mechanism of MRR and then designed an optically controlled Feynman gate (i.e. reversible controlled-Not gate) using MRRs. The switching mechanism of MRR is reliable and the switching speed of MRR is very fast. The change the resonance condition of MRR can occur when the ring is exposed in the optical pump beam with high intensity. The logic processors using Reversible Logic gates are more acceptable due to their data recovery capability and low power consumption. The designed circuit of optically controlled NOT Gate is testified with the MATLAB simulation results. To fulfil the demand for an ultra-high-speed network, the development of high speed optical logic processors is the primary requisite and this scheme will be very helpful for developing such elements.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3