Experimental Research on Damage Detection Based on Time Domain Data and Bayesian Fusion

Author:

Guo Huiyong,Li Meng

Abstract

Abstract Damages such as cracks often occur in engineering structures, and such damages often have the characteristics of time-domain variable stiffness. To effectively identify this kind of damage, a damage detection method based on time domain data and Bayesian fusion is presented in this paper. First, a hybrid model of the AR/ARCH model is used to identify structural nonlinear damage, and a damage indicator is also used: the second-order-variance indicator (SOVI). Although most of the nonlinear damage information is extracted by the indicator SOVI and ARCH model, some nonlinear information is still filtered out by the AR model part. Therefore, a linear cepstral metric indicator (CMI) based on the AR model is introduced to extract the remained nonlinear damage information, and further, the Bayesian fusion theory is applied to combine the results of SOVI and CMI to obtain complete nonlinear damage information and achieve better identification results. Finally, a three-story frame experimental model is used to demonstrate the effectiveness of the Bayesian fusion. Experimental results show that the Bayesian fusion method is superior to SOVI and CMI.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference6 articles.

1. Damage diagnosis of high-rise buildings under variable ambient conditions using subdomain approach;Lakshmi;Inverse Problems in Science and Engineering,2021

2. Estimation and forecasting of machine health condition using ARMA/GARCH model;Pham;Mechanical Systems & Signal Processing,2010

3. Structural Nonlinear Damage Identification Algorithm Based on Time Series ARMA/GARCH Model;Chen;Advances in Structural Engineering,2013

4. Nonlinear damage identification using higher statistical moments of structural responses;Yu;Structural Engineering & Mechanics,2015

5. Structural Nonlinear Damage Detection Method Using AR/ARCH Model;Cheng;International Journal of Structural Stability and Dynamics,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3