Experimental study on enhancement condensation heat transfer in tube by foam metal in presence of non-condensable gas

Author:

Li Luyi

Abstract

Abstract Condensation heat transfer in tube is widely applied in industrial production, and the heat transfer process is often weakened by non-condensable gas (NCG) in actual production. Enhancing condensation heat transfer is beneficial to improve production efficiency, which has always been a hot topic in current research. Foam metal material with large specific surface area and good thermal conductivity is an ideal material to enhance heat transfer. In order to study enhancement heat transfer effect and optimize structure of foam metal, this paper investigated condensation heat transfer in tube strengthened by foam metal in presence of NCG experimentally. Section shape of foam metal is annular, and the pores per inch (PPI) of foam metals is 10, 15, 20 respectively. The effects of PPI value, steam/air mixture mass flow, and NCG mass fraction on heat transfer coefficient (HTC) and flow resistance are studied. The results reveal the following: (1) Compared with smooth tube, the foam metal enhances heat transfer significantly, and HTC increases by 1.5-2.3 times. (2) At same steam/air mixture mass flow, 10PPI foam metal tube has the highest HTC compared to others. (3) With increase of NCG mass fraction and PPI value, pressure drop increases and the HTC decreases. Based on experimental data, pressure drop and HTC correlations are developed. This paper provides an important technical basis for foam metal material application in enhancement heat transfer area.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3