Compression Tests at High Strain Rate on 3D-Printed CuCrZr Alloy Specimens - Material Model Calibration

Author:

Cortis D,Mancini E,Nisi S,Orlandi D,Stefano P Di,Utzeri M,Sasso M

Abstract

Abstract CuCrZr alloy is used to produce actively cooled components for high heat flux elements of beamlines and for heat sink of plasma facing components in nuclear fusion devices such as ITER and DEMO. It has an excellent thermal conductivity and specific mechanical strength, together with a high electrical conductivity that is giving high push to its use. Recently, CuCrZr alloy was also considered as an attractive material for Additive Manufacturing, leading to extend its application in the field of strain rate studies. As a matter of fact, its strain rate dependency is playing an important role for vertical target plasma-facing units components uses as heat sink in the ITER divertor or as structural material for actively cooled plasma facing components. This paper describes the results obtained by quasi-static and dynamic compression tests carried out on CuCrZr specimens produced by laser Powder Bed Fusion (PBF), with Selective Laser Melting (SLM) technology. Quasi-static tests have been conducted by means a servo-hydraulic tensile machine, while a direct tension-compression split Hopkinson bar has been used to perform the tests at high strain rate. Since dedicated heat treatments are required to obtain optimal combination of strength, ductility, and conductivity, some of the specimens have been heated up to 560 – 580 °C for 4 – 5 h and then cooled in air. Eventually, the calibration of the most appropriate constitutive models for 3D-printed CuCrZr alloy deformed at high strain rate has been carried out by means an inverse analytical procedure.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference22 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unraveling the mechanism for thermal stability of a high-strength Cu alloy produced by a novel cryogenic ECAP route;Materials & Design;2024-05

2. Metal additive manufacturing at INFN-LNGS laboratory: Facilities, testing and future capabilities;LOW RADIOACTIVITY TECHNIQUES 2022 (LRT 2022): Proceedings of the 8th International Workshop on Low Radioactivity Techniques;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3