Propagation in Superconducting Niobium Rectangular Waveguide in the 100 GHz band

Author:

Nakajima Taku,Suzuki Kazuji,Kojima Takafumi,Uzawa Yoshinori,Ishino Masayuki,Watanabe Issei

Abstract

Abstract Rectangular waveguides that use superconducting materials for walls are expected to reduce transmission loss compared to normal metal waveguides. However, research on superconducting waveguides has been limited, particularly on the fabrication and measurement of physical models in the mm/sub-mm band. We attempted to fabricate a niobium (Nb) waveguide and measure its propagation. Because Nb is known to be a difficult-to-machine material, we searched for the best cutting tools and machining conditions. Consequently, we fabricated a waveguide with a surface accuracy of 0.3 µm rms using an end mill with a diameter of 1 mm. For the measurement of waveguide propagation, the resonator method was adopted, and the resonance characteristics were measured at room (298 K) and cryogenic (4.8 K) temperatures in the 100 GHz band. The resonance property at 298 K is consistent with the shapes predicted from literature-based conductivity. However, at 4.8 K, that of superconducting Nb is significantly changed. We used electromagnetic analysis to reproduce these properties, and the electrical conductivity and propagation loss were calculated. The conductivity and loss were computed as 1.8×1011 S/m and 0.05 dB/m, respectively. We observed a slight transmission loss and verified the effectiveness of the superconducting waveguides.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3