Simulation of a conventionally neutral boundary layer with two-equation URANS

Author:

Baungaard M,Van Der Laan M P,Kelly M,Hodgson E L

Abstract

Abstract Simulating conventionally neutral boundary layers (CNBLs) with the unsteady Reynolds-Averaged Navier-Stokes (URANS) technique is investigated in this paper using a modified two-equation linear eddy viscosity turbulence model. For CNBLs over a flat and uniform surface, as typically used as the inflow to wind farm simulations, the governing equations of URANS can be solved with a one-dimensional solver, which makes the simulation of a typical CNBL five to six orders of magnitude faster than with large-eddy simulation (LES) approaches. However, URANS on the other hand requires more modelling than LES, and its accuracy is heavily dependent on the turbulence model employed. Through a cross-code study of a CNBL case with data from five different LES codes, it is found that the length-scale limiter of the employed turbulence model should be removed to correctly predict the atmospheric boundary layer (ABL) height evolution and the qualitative shape of various atmospheric profiles. A parametric study of simulations with varying initial ABL height further demonstrates the prediction capabilities of URANS, although a comparison with LES data shows that modelling of turbulence anisotropy and near-surface turbulence could be improved.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3